
Azimuthal Decorrelations
with Early ATLAS Data



φ Decorrelation in Dijet Events

Azimuthal angle between leading two jets
reflects activity in rest of event

Soft radiation causes small azimuthal
decorrelations
Additional hard radiation can lead to
large azimuthal decorrelations

∆φdijet sensitive to higher-order QCD
radiation without explicitly measuring
additional jets ⇒ tests O(α4

s) calculations
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d∆φdijet
measured with

both leading jets at central rapidities
provides a precision test of NLO pQCD
both leading jets at large rapidities also
probes BFKL (rapidity gaps)
other configurations useful for tuning Monte
Carlo event generators

Check NLO pQCD with limited statistics
(
R

L ∼ 1pb−1) and large JES uncertainty
Analysis presented today performed using
PYTHIA J3–7 dijets. ALPGEN+HERWIG
substitutes for data.
Will expand measurement (e.g., multiple
pT bins, larger y coverage) with more
integrated luminosity and calibrated JES.
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Event Selection
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MC artifact

anti-kT jets with D=0.6
apply MC-based JES using H1 with NI
no jet quality or overlap-removal criteria

Require both leading jets to have |y | < 0.5
avoids crack region and lack of data-derived
η-dependent JES corrections
can be expanded up to |y | < 1 if additional
statistics are necessary

Require leading jet pT > 250 GeV based on
inclusive jet trigger turn-on

must be on plateau
lowest threshold unprescaled trigger is L1_J130
L1_J120 exists in MC; scale up

Require second leading jet pT > 100 GeV
based on jet-reconstruction efficiency

use track-based jets to determine turn-on
must be on plateau
100 GeV requirement extremely conservative;
can lower to ∼ 70 GeV to increase statistics
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Analysis Issues

Observable defined as
1

σdijet
·

dσdijet

d∆φdijet

efficiencies must be flat versus ∆φ
absolute efficiency not important
(no luminosity uncertainty)
reduced dependence on JES

angles less sensitive to JES variations
requires φ intercalibration
absolute JES is dominant systematic uncertainty, however, effect limited to smearing
across minimum pT cuts

Data quality a key concern
with events from the very
early running period

need tracker and calorimeter
no attempt (yet) to use
standard DQ tools
use track-jets to identify
calorimeter problems
(hot cells, dead FEB)
remove bad phase space
correct for lost geometrical
acceptance
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Unfolding

Result corrected for finite experimental resolution
to compare with NLO pQCD prediction

measure jet resolutions:
pT resolution extracted using dijet asymmetry
same method can measure ∆φ resolution for
∆φ ∼ π ⇒ compare data and MC
take φ and y resolutions from MC

studying two unfolding techniques:
highly parameterized MC (resolution functions)
regularized migration matrix (SVD in RooUnfold)

current result uses truth-based unfolding
bins chosen to have ≈ 90% purity
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Measurement

Considered following sources of
systematic uncertainty:

±15% absolute JES
±5% φ-intercalibration
(implemented as a cos φ distribution)
±5% unfolding
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dominant source of
systematic uncertainty

ALPGEN + HERWIG “data” assuming
R

L = 1pb−1 compared to NLO pQCD
calculation (NLOJET++)

µF = µR = 〈pT 〉
scale uncertainty indicated by yellow band
MSTW2008 NLO PDF (68% CL)
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